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1. Goal

Let f be a function of two variables and let t0 and y0 be real numbers. This defines an initial-value
problem:

y′(t) = f(t, y(t))

y(t0) = y0.
(1)

Our goal is to prove that under certain conditions, there is exactly one solution y to this differential
equation. That is, we would like to prove both the existence and uniqueness of solutions to the
equation.

2. Initial Steps

We will start our proof by transforming the differential equation (1) into a more convenient form.
This is done by integrating both sides from t0 to t:∫ t

t0

y′(τ) dτ =

∫ t

t0

f(τ, y(τ)) dτ.

Here, to avoid ambiguity, we are using the variable τ as our variable of integration instead of t. The
above equation reduces to

y(t)− y0 =

∫ t

t0

f(τ, y(τ)) dτ,

since y(t0) = y0, and solving for y(t) gives the equation

(2) y(t) = y0 +

∫ t

t0

f(τ, y(τ)) dτ.

By this reasoning, any function satisfying (1) must also satisfy equation (2). However, the converse
statement requires a little more work. Suppose that a function y satisfies equation (2). Then it
follows immediately that y(t0) = y0, because

y(t0) = y0 +

∫ t0

t0

f(τ, y(τ)) dτ = y0.

Now, the fundamental theorem of calculus tells us that if a function f is continuous, then
∫ b
a
f(x) dx

is differentiable with respect to b, and

d

db

∫ b

a

f(x) dx = f(b).

Hence, if we assume that if both f and y are continuous, then f(τ, y(τ)) is a continuous function of
τ and we have

y′(t) =
d

dt

∫ t

t0

f(τ, y(τ)) dτ = f(t, y(t)).

Therefore, if y is a continuous function satisfying (2) and f is continuous, then y is a solution of the
original differential equation (1).
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3. Outline

Our proof will consist of the following major steps:

(a) Construct a sequence of functions {y0(t), y1(t), . . .}, called Picard iterates, which approximate
a solution to the equation (2).

(b) Show that the sequence of functions converges and define y(t) = limn→∞ yn(t).
(c) Show that the function y(t) satisfies equation (2).
(d) Show that the function y(t) is continuous.
(e) Show that there can only be one solution to the equation (2).

Having completed these tasks, our reasoning above will imply that the function y(t) is the unique
solution to (1).

4. Construction of the Picard iterates

As our first approximation to a solution to the differential equation (1), we will choose the simplest
possible function that satisfies the condition y(t0) = y0; that is,

y0(t) = y0.

Our procedure for generating better approximations is motivated by the relation (2) which is satisfied
by any solution y to (1), reprinted here:

y(t) = y0 +

∫ t

t0

f(τ, y(τ)) dτ.

In particular, we will define

(3) yn(t) = y0 +

∫ t

t0

f(τ, yn−1(τ)) dτ

for every n ≥ 1. Observe that we have yn(t0) = y0 for every n ≥ 0, so every Picard iterate obeys the
initial condition.

As a concrete example of this iteration process, consider the differential equation

y′(t) = y(t)

y(0) = 1,

whose unique solution is y(t) = et. For this equation, we have f(t, y) = y, t0 = 0, and y0 = 1. This
transforms the recurrence relation (3) to

yn(t) = 1 +

∫ t

0

yn−1(τ) dτ ;

therefore,

y0(t) = 1

y1(t) = 1 +

∫ t

0

dτ = 1 + t

y2(t) = 1 +

∫ t

0

1 + τ dτ = 1 + t+
t2

2
...

yn(t) = 1 + t+
t2

2
+ · · ·+ tn

n!
.
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The astute reader will recognize yn(t) as the nth partial sum of the Maclaurin series for et. It
follows easily, then, that the sequence {y0(t), y1(t), . . .} converges and that the limiting function
y(t) = limn→∞ yn(t) = et is continuous and satisfies (2). We now show that this conclusion is true in
general under suitable assumptions.

5. Bounding the Picard iterates

In general, even if the differential equation (1) has a unique solution, the solution may only be
valid on a specified interval—typically because f(t, y(t)) is not defined for one or more values of t.
Therefore, we will have to restrict our reasoning to a limited interval containing t0. However, it is
difficult to reason about the largest possible interval—that is, the largest interval over which the
differential equation has a solution. Instead, we will pick a smaller interval in such a way that the
behavior of the Picard iterates is easy to analyze over the interval.

To construct this interval, we will start by picking two arbitrary positive real numbers a and
b. These numbers define a rectangle in the t-y plane that has vertices at (t0, y0 − b), (t0, y0 + b),
(t0 + a, y0 − b), and (t0 + a, y0 + b). This rectangle is illustrated in Figure 1.

t

y

(t0, y0)

(t0, y0 − b)

(t0, y0 + b)

(t0 + a, y0 − b)

(t0 + a, yb + b)

y0 − b

y0

y0 + b

t0 t0 + a

y = y(t)

Figure 1

Let R denote the rectangle and its interior, i.e. the set of all points (t, y) such that t0 ≤ t ≤ t0 + a
and y0− b ≤ y ≤ y0 + b. Since we are assuming that f is continuous, it follows that |f | is continuous
and has a maximum value on R. We let M denote this maximum value, i.e.

M = max
(t,y)∈R

|f(t, y)|.

Next, we consider the lines through the point (t0, y0) that have slope M and −M , respectively.
These lines have equations y = y0 ±M(t− t0), and are shown in Figure 2.

From the figure, it is easy to see that depending on the value of M , the lines will leave the
rectangle at either t = a or t = b/M , whichever is smaller. We will denote this t-value by α, i.e.

α = min

(
a,

b

M

)
.

We will now prove that for t0 ≤ t ≤ t0 + α, every Picard iterate lies between the two lines. That is,
until the lines leave the rectangle R, every yn(t) lies within the shaded regions in Figure 2. We can
reformulate this hypothesis as follows:

y0 −M(t− t0) ≤ yn(t) ≤ y0 +M(t− t0)
−M(t− t0) ≤ yn(t)− y0 ≤M(t− t0)
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(t0, y0)

(a, y0 +Ma)

(a, y0 −Ma)

(t0, y0)

(y0 + b/M, b)

(y0 − b/M,−b)

Figure 2

|yn(t)− y0| ≤M(t− t0).
Because M ≥ 0 and t ≥ t0, we need no absolute value bars on the right-hand side.

To prove the hypothesis, we use induction on n. The case of n = 0 follows immediately, as

|y0(t)− y0| = |y0 − y0| = 0 ≤M(t− t0).
For the inductive case, we assume—for some n ≥ 0—that |yn(t)− y0| ≤ M(t− t0) for t0 ≤ t ≤ α
and seek to prove that |yn+1(t)− y0| ≤M(t− t0) on the same interval. We now use the definition
(3) of the Picard iterates, reprinted here:

yn+1(t) = y0 +

∫ t

t0

f(τ, yn(τ)) dτ.

In particular, we note that

|yn+1(t)− y0| =
∣∣∣∣∫ t

t0

f(τ, yn(τ)) dτ

∣∣∣∣ .
Next, we use the following two elementary properties of definite integrals:∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx∫ b

a

f(x)|g(x)| dx ≤
(

max
a≤x≤b

f(x)

)∫ b

a

|g(x)| dx.

Note that we have t0 ≤ τ ≤ t ≤ t0 + α. Consequently, it follows from the inductive hypothesis that
yn(τ) lies between the lines and hence within R on this interval. Thus, (τ, yn(τ)) lies within R for
all τ from t0 to t, and |f(τ, yn(τ))| ≤M over this interval. From these properties, we have:∣∣∣∣∫ t

t0

f(τ, yn(τ)) dτ

∣∣∣∣ ≤ ∫ t

t0

|f(τ, yn(τ))| dτ

≤M(t− t0).

We have therefore shown that |yn+1(t)−y0| ≤M(t−t0), which completes the proof that |yn(t)−y0| ≤
M(t− t0) for every n ≥ 0.

6. Proof that the Picard iterates converge

Now that we have obtained a bound on the size of yn(t) on a suitable interval, we can show
that the sequence {y0(t), y1(t), . . .} converges on that interval. We do this by rewriting yn(t) as a
telescoping series:

yn(t) = y0(t) + [y1(t)− y0(t)] + [y2(t)− y1(t)] + · · ·+ [yn(t)− yn−1(t)]
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= y0(t) +
n∑
k=1

[
yk(t)− yk−1(t)

]
,

so that

lim
n→∞

yn(t) = y0(t) +
∞∑
k=1

[
yk(t)− yk−1(t)

]
.

If the infinite series
∑∞

k=1[yk(t)−yk−1(t)] converges, then so does the sequence {y0(t), y1(t), . . .}. Now,
if we replace every term of a series with its absolute value and it still converges, then certainly the
original series must also converge. Thus, it suffices to show the convergence of

∑∞
k=1 |yk(t)− yk−1(t)|.

To do this, we will use a series of approximations involving the quantity |yk(t)− yk−1|. Firstly, we
will use the definition (3) of the Picard iterate, again reprinted here:

yn(t) = y0 +

∫ t

t0

f(τ, yn−1(τ)) dτ

In particular, we find that

|yk(t)− yk−1(t)| =
∣∣∣∣(y0 +

∫ t

t0

f(τ, yk−1(τ)) dτ

)
−
(
y0 +

∫ t

t0

f(τ, yk−2(τ)) dτ

)∣∣∣∣
=

∣∣∣∣∫ t

t0

f(τ, yk−1(τ))− f(τ, yk−2(τ)) dτ

∣∣∣∣
≤
∫ t

t0

∣∣∣f(τ, yk−1(τ))− f(τ, yk−2(τ))
∣∣∣dτ,

provided that k ≥ 2. Next we invoke the mean value theorem, which states that if a function g is
continuous on [a, b] and differentiable on (a, b) then there exists a number ξ ∈ (a, b) such that

g′(ξ) =
g(b)− g(a)

b− a
.

Now, for any given τ we can define

g(y) = f(τ, y)

a = yk−2(τ)

b = yk−1(τ).

If we assume that f is continuous and the partial derivative fy = ∂f/∂y exists, i.e. that g is
differentiable, then the mean value theorem tells us that there exists a number ξ between yk−2(τ)
and yk−1(τ) such that

fy(τ, ξ) =
f(τ, yk−1(τ))− f(τ, yk−2(τ))

yk−1(τ)− yk−2(τ)
.

Rearranging this equation, we find the useful relation

f(τ, yk−1(τ))− f(τ, yk−2(τ)) = fy(τ, ξ)
[
yk−1(τ)− yk−2(τ)

]
.

If we make this argument for every t0 ≤ τ ≤ t, we may obtain a different number ξ for each τ . That
is, we must replace the number ξ with a function ξ(τ). We then find that∫ t

t0

∣∣∣f(τ, yk−1(τ))− f(τ, yk−2(τ))
∣∣∣dτ =

∫ t

t0

∣∣∣fy(τ, ξ(τ))
[
yk−1(τ)− yk−2(τ)

]∣∣∣ dτ
=

∫ t

t0

∣∣∣fy(τ, ξ(τ))
∣∣∣∣∣∣yk−1(τ)− yk−2(τ)

∣∣∣ dτ.
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Now, let us assume that ∂f/∂y not only exists over the rectangle R, but it is also continuous.1 Then
|∂f/∂y| is also continuous, and therefore has a maximum value on R. We will denote this maximum
value by L, i.e.

L = max
(t,y)∈R

|fy(t, y)|.

Since ξ(τ) lies between the Picard iterates yk−2(τ) and yk−1(τ), our work in the previous section
proves that it lies between the lines y = y0 ±M(t− t0) for t0 ≤ τ ≤ α. Hence, all points (τ, ξ(τ))
lie within R for t0 ≤ τ ≤ t, and so |fy(τ, ξ(τ))| ≤ L. The same elementary properties of definite
integrals we used earlier apply again, so that∫ t

t0

∣∣∣fy(τ, ξ(τ))
∣∣∣∣∣∣yk−1(τ)− yk−2(τ)

∣∣∣ dτ ≤ L

∫ t

t0

∣∣∣yk−1(τ)− yk−2(τ)
∣∣∣ dτ.

In summary,

|yk(t)− yk−1(t)| ≤ L

∫ t

t0

∣∣∣yk−1(τ)− yk−2(τ)
∣∣∣ dτ

for every k ≥ 2. We now switch to an inductive argument on k. For k = 1, recall we proved in the
previous section that |y1(t)− y0(t)| ≤M(t− t0) for t0 ≤ t ≤ t0 + α. For k = 2, we have

|y2(t)− y1(t)| ≤ L

∫ t

t0

∣∣∣y1(τ)− y0(τ)
∣∣∣ dτ

≤ L

∫ t

t0

M(t− t0) dτ

=
ML(t− t0)2

2
.

For k = 3, we have

|y3(t)− y2(t)| ≤ L

∫ t

t0

∣∣∣y2(τ)− y1(τ)
∣∣∣ dτ

≤ L

∫ t

t0

ML(t− t0)2

2
dτ

=
ML2(t− t0)3

3!
.

Inductively, we find that

(4) |yk(t)− yk−1(t)| ≤
MLk−1(t− t0)k

k!

for t0 ≤ t ≤ t0 + α. But now we can easily show that the series
∑∞

k=1 |yk(t) − yk−1| converges,
because

∞∑
k=1

∣∣∣yk(t)− yk−1(t)∣∣∣ ≤ ∞∑
k=1

MLk−1(t− t0)k

k!

=
M

L

∞∑
k=1

[L(t− t0)]k

k!

=
M

L

[
∞∑
k=0

[
[L(t− t0)]k

k!

]
− 1

]
1This is not strictly necessary. All we need is that |∂f/∂y| is bounded.
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=
M

L

(
eL(t−t0) − 1

)
.

As t0 ≤ t ≤ t0 + α, we have t− t0 ≤ α and eL(t−t0) ≤ eLα. This shows that
∞∑
k=1

∣∣∣yk(t)− yk−1(t)∣∣∣ ≤ M

L

(
eLα − 1

)
,

which implies the series converges. This completes our proof that the sequence of Picard iterates
{y0(t), y1(t), . . .} converges. We thus can define y(t) = limn→∞ yn(t).

7. Proof that y(t) satisfies equation (2)

We will now show that the function y(t) = limn→∞ yn(t) satisfies equation (2), reprinted here:

y(t) = y0 +

∫ t

t0

f(τ, y(τ)) dτ.

To do so, we start with the definition (3) of the Picard iterates, reprinted here:

yn+1(t) = y0 +

∫ t

t0

f(τ, yn(τ)) dτ.

Taking the limits of both sides as n→∞ gives us

y(t) = y0 + lim
n→∞

∫ t

t0

f(τ, yn(τ)) dτ ;

to show that y(t) satisfies (2), we must demonstrate that∫ t

t0

f(τ, y(τ)) dτ = lim
n→∞

∫ t

t0

f(τ, yn(τ)) dτ,

or equivalently that

lim
n→∞

∣∣∣∣∫ t

t0

f(τ, y(τ)) dτ −
∫ t

t0

f(τ, yn(τ)) dτ

∣∣∣∣ = 0.

We may now use roughly the same procedure that we used to show the convergence of the sequence
{y0(t), y1(t), . . .}. In particular:∣∣∣∣∫ t

t0

f(τ, y(τ)) dτ −
∫ t

t0

f(τ, yn(τ)) dτ

∣∣∣∣ =

∣∣∣∣∫ t

t0

f(τ, y(τ))− f(τ, yn(τ)) dτ

∣∣∣∣
≤
∫ t

t0

∣∣∣f(τ, y(τ)) dτ − f(τ, yn(τ))
∣∣∣ dτ.

Next, applying the mean value theorem shows that for every τ between t0 and t, there is a number
ξ(τ) between yn(τ) and y(τ) such that

fy(τ, ξ(τ)) =
f(τ, y(τ))− f(τ, yn(τ))

y(τ)− yn(τ)
,

or equivalently

f(τ, y(τ))− f(τ, yn(τ)) = fy(τ, ξ(τ))
[
y(τ)− yn(τ)

]
.

We then find that∫ t

t0

∣∣∣f(τ, y(τ))− f(τ, yn(τ))
∣∣∣ dτ =

∫ t

t0

∣∣∣fy(τ, ξ(τ))
∣∣∣∣∣∣y(τ)− yn(τ)

∣∣∣ dτ.
As y(t) is the limit of a sequence of functions yn(t) which all lie within the closed rectangle R for
t0 ≤ τ ≤ t, it follows that y(t) also lies within R on that interval. Because ξ(τ) is between yn(τ) and
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y(τ), all points (τ, ξ(τ)) lie within R for t0 ≤ τ ≤ t, and |fy(τ, ξ(τ))| ≤ L. We can thus conclude
that ∫ t

t0

∣∣∣fy(τ, ξ(τ))
∣∣∣∣∣∣y(τ)− yn(τ)

∣∣∣ dτ ≤ L

∫ t

t0

∣∣∣y(τ)− yn(τ)
∣∣∣ dτ.

Now observe that the relations

yn(τ) = y0(τ) +
n∑
k=1

[
yk(τ)− yk−1(τ)

]
and

y(τ) = y0(τ) +
∞∑
k=1

[
yk(τ)− yk−1(τ)

]
may be combined to obtain

y(τ)− yn(τ) =
∞∑

k=n+1

[
yk(τ)− yk−1(τ)

]
.

Also, relation (4) tells us that

|yk(τ)− yk−1(τ)| ≤ MLk−1(τ − t0)k

k!
,

so ∣∣∣y(τ)− yn(τ)
∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

[
yk(τ)− yk−1(τ)

]∣∣∣∣∣ ≤
∞∑

k=n+1

∣∣∣yk(τ)− yk−1(τ)
∣∣∣ ≤ ∞∑

k=n+1

MLk−1(τ − t0)k

k!
,

and using the fact that t0 ≤ τ ≤ t ≤ α gives

(5)
∣∣∣y(τ)− yn(τ)

∣∣∣ ≤ ∞∑
k=n+1

MLk−1αk

k!

Substituting (5) yields:∫ t

t0

fy(τ, ξ(τ))
[
y(τ)− yn(τ)

]
dτ ≤ L

∫ t

t0

∞∑
k=n+1

MLk−1αk

k!
dτ.

Since every term of this series is nonnegative, Tonelli’s theorem guarantees that we may swap the
integral and summation:

L

∫ t

t0

∞∑
k=n+1

MLk−1αk

k!
dτ = L

∞∑
k=n+1

∫ t

t0

MLk−1αk

k!
dτ ;

this allows us to simplify as follows:

L
∞∑

k=n+1

∫ t

t0

MLk−1αk

k!
dτ ≤M

∞∑
k=n+1

[
Lkαk

k!
(t− t0)

]
≤Mα

∞∑
k=n+1

(Lα)k

k!
.

Since the latter summation is the tail end of a series expansion for eLα, it approaches zero as n→∞.
To prove this formally, observe that

∞∑
k=n+1

(Lα)k

k!
=
∞∑
1

(Lα)k

k!
−

n∑
1

(Lα)k

k!
= eLα −

n∑
1

(Lα)k

k!
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and

lim
n→∞

∞∑
k=n+1

(Lα)k

k!
= eLα − lim

n→∞

n∑
1

(Lα)k

k!
= 0.

Since ∣∣∣∣∫ t

t0

f(τ, y(τ)) dτ −
∫ t

t0

f(τ, yn(τ)) dτ

∣∣∣∣ ≤Mα
∞∑

k=n+1

(Lα)k

k!

and

lim
n→∞

∞∑
k=n+1

(Lα)k

k!
= 0,

it follows that

lim
n→∞

∣∣∣∣∫ t

t0

f(τ, y(τ)) dτ −
∫ t

t0

f(τ, yn(τ)) dτ

∣∣∣∣ = 0,

which completes the proof that y(t) = limn→∞ yn(t) satisfies (2).

8. Proof that y(t) is continuous

To show that y(t) is continuous, we must show that for every ε > 0 there exists a δ > 0 such that
|h| < δ implies |y(t+ h)− y(t)| < ε. To do so, we observe that

y(t+ h)− y(t) = [y(t+ h)− yn(t+ h)] + [yn(t+ h)− yn(t)] + [yn(t)− y(t)]

and consequently

|y(t+ h)− y(t)| ≤ |y(t+ h)− yn(t+ h)|+ |yn(t+ h)− yn(t)|+ |yn(t)− y(t)|

for every n ≥ 0. By picking a large enough n, we can reduce the magnitude of this sum to ε. Since
the summation

∞∑
k=n+1

MLk−1αk

k!

is the tail end of a convergent Maclaurin series, we can make it as small as we wish by selecting a
sufficiently large n. In particular, we will choose an n such that

∞∑
k=n+1

MLk−1αk

k!
<
ε

3

and relation (5) implies ∣∣∣y(τ)− yn(τ)
∣∣∣ < ε

3
,

for both τ = t and τ = t+ h.
This takes care of two out of the three terms. For the third, |yn(t+ h)− yn(t)|, note that yn(t) is

continuous for every n ≥ 0, and so for every ε′ > 0 there exists a δ′ > 0 such that |h| < δ′ implies
|yn(t+ h)− yn(t)| < ε′. We let ε′ = ε/3 and define δ = δ′. Thus, each of the three terms is strictly
less than ε/3, and

|y(t+ h)− y(t)| < ε

3
+
ε

3
+
ε

3
= ε.

This completes the proof that y(t) is continuous.
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9. Proof that the solution to equation (2) is unique

Having shown that a solution to (1) exists, we now show that it is unique. Supposing that two
solutions of (1) are given by y(t) and z(t), we define w(t) = |y(t) − z(t)|; it is sufficient, then, to
show that w(t) = 0 for all t.

If y(t) and z(t) are solutions of (1), then they are also solutions of (2); that is,

y(t) = y0 +

∫ t

t0

f(τ, y(τ)) dτ

z(t) = y0 +

∫ t

t0

f(τ, z(τ)) dτ.

Subtracting, we find that∣∣y(t)− z(t)
∣∣ =

∣∣∣∣∫ t

t0

f(τ, y(τ)) dτ −
∫ t

t0

f(τ, z(τ)) dτ

∣∣∣∣
w(t) ≤

∫ t

t0

∣∣∣f(τ, y(τ))− f(τ, z(τ))
∣∣∣ dτ,

and by the same reasoning with the mean value theorem that we used twice before,

w(t) ≤ L

∫ t

t0

∣∣y(τ)− z(τ)
∣∣ dτ = L

∫ t

t0

w(τ) dτ.

We now define

U(t) =

∫ t

t0

w(τ) dτ,

so that

U ′(t) = w(t) ≤ L

∫ t

t0

w(τ) dτ = LU(t),

or equivalently
U ′(t)− LU(t) ≤ 0.

Multiplying both sides by the strictly positive integrating factor e−L(t−t0) gives

U ′(t)e−L(t−t0) − LU(t)e−L(t−t0) ≤ 0

d

dt

[
U(t)e−L(t−t0)

]
≤ 0.

Now, U(t0) =
∫ t0
t0
w(τ) dτ = 0, so the function U(t)e−L(t−t0) is zero at t = t0. Furthermore, w(t) is

nonnegative and t ≥ t0, so U(t) is also nonnegative. Since the function U(t)e−L(t−t0) is zero at t = t0,
is never less than zero, and is never increasing, it must be zero for all t > t0 as well. We must then
conclude that U(t) = 0 and therefore that w(t) = 0. This completes the proof.
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